macrosynergy.learning.forecasting.neighbors#
- class KNNClassifier(n_neighbors='sqrt', weights='uniform')[source]#
Bases:
ClassifierMixin
,BaseEstimator
- fit(X, y)[source]#
Fit method.
- Parameters:
X (pd.DataFrame or np.ndarray) – The input feature matrix.
y (pd.Series or np.ndarray) – The target variable.
- Returns:
The fitted model.
- Return type:
self
- predict(X)[source]#
Predict method.
- Parameters:
X (pd.DataFrame or np.ndarray) – The input feature matrix.
- Returns:
The predicted values.
- Return type:
np.ndarray
- predict_proba(X)[source]#
Predict probability method.
- Parameters:
X (pd.DataFrame or np.ndarray) – The input feature matrix.
- Returns:
The predicted probabilities.
- Return type:
np.ndarray
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') KNNClassifier #
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.