macrosynergy.learning.forecasting.linear_model.lad_regressors#
- class LADRegressor(fit_intercept=True, positive=False, alpha=0, shrinkage_type='l1', tol=None, maxiter=None)[source]#
Bases:
BaseEstimator
,RegressorMixin
- fit(X, y, sample_weight=None)[source]#
Learn LAD regression model parameters.
- Parameters:
X (pd.DataFrame or np.ndarray) – Input feature matrix.
y (pd.Series or pd.DataFrame or np.ndarray) – Target vector associated with each sample in X.
sample_weight (np.ndarray, default=None) – Numpy array of sample weights to create a weighted LAD regression model.
- predict(X)[source]#
Predict dependent variable using the fitted LAD regression model.
- Parameters:
X (pd.DataFrame or np.ndarray) – Input feature matrix.
- Returns:
y_pred – Numpy array of predictions.
- Return type:
np.ndarray
Notes
If the model learning algorithm failed to converge, the predict method will return an array of zeros. This has the interpretation of no buy/sell signal being triggered based on this model.
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LADRegressor #
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LADRegressor #
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- class SignWeightedLADRegressor(fit_intercept=True, positive=False, alpha=0, shrinkage_type='l1', tol=None, maxiter=None)[source]#
Bases:
SignWeightedRegressor
- set_params(**params)[source]#
Setter method to update the parameters of the SignWeightedLADRegressor.
- Parameters:
**params (dict) – Dictionary of parameters to update.
- Returns:
The SignWeightedLADRegressor instance with updated parameters.
- Return type:
self
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') SignWeightedLADRegressor #
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- class TimeWeightedLADRegressor(fit_intercept=True, positive=False, half_life=252, alpha=0, shrinkage_type='l1', tol=None, maxiter=None)[source]#
Bases:
TimeWeightedRegressor
- set_params(**params)[source]#
Setter method to update the parameters of the TimeWeightedLADRegressor.
- Parameters:
**params (dict) – Dictionary of parameters to update.
- Returns:
The TimeWeightedLADRegressor instance with updated parameters.
- Return type:
self
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') TimeWeightedLADRegressor #
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.